Conditional Deletion of Cytochrome P450 Reductase in Osteoprogenitor Cells Affects Long Bone and Skull Development in Mice Recapitulating Antley-Bixler Syndrome: Role of a Redox Enzyme in Development
نویسندگان
چکیده
NADPH-cytochrome P450 oxidoreductase (POR) is the primary electron donor for cytochromes P450, dehydrocholesterol reductase, heme oxygenase, and squalene monooxygenase. Human patients with specific mutations in POR exhibit severe developmental malformations including disordered steroidogenesis, sexual ambiguities and various bone defects, similar to those seen in patients with Antley-Bixler syndrome (ABS). To probe the role of POR during bone development, we generated a conditional knockout mouse (CKO) by cross breeding Por (lox/lox) and Dermo1 Cre mice. CKO mice were smaller than their littermate controls and exhibited significant craniofacial and long bone abnormalities. Differential staining of the CKO mice skull bases shows premature fusion of the sphenooccipital and basioccipital-exoccipital synchondroses. Class III malocclusion was noted in adult knockout mice with an unusual overgrowth of the lower incisors. Shorter long bones were observed along with a reduction in the bone volume fraction, measured by microCT, in the Por-deleted mice compared to age- and sex-matched littermate controls. Concerted up- or down-regulation of proteins in the FGF signaling pathway observed by immunohistochemistry in the tibia samples of CKO mice compared to wild type controls shows a decrease in the FGF signaling pathway. To our knowledge, this is the first report of a mouse model that recapitulates both skull and long bone defects upon Por deletion, offering an approach to study the sequelae of POR mutations. This unique model demonstrates that P450 metabolism in bone itself is potentially important for proper bone development, and that an apparent link exists between the POR and FGF signaling pathways, begging the question of how an oxidation-reduction flavoprotein affects developmental and cellular signaling processes.
منابع مشابه
A rare cause of congenital adrenal hyperplasia: Antley-Bixler syndrome due to POR deficiency.
Cytochrome P450 oxidoreductase (POR) deficiency is a recently discovered new variant of congenital adrenal hyperplasia. Distinctive features of POR deficiency are the presence of disorders of sexual development in both sexes, glucocorticoid deficiency and skeletal malformations similar to those observed in the Antley-Bixler syndrome.
متن کاملMouse knockout of the cholesterogenic cytochrome P450 lanosterol 14alpha-demethylase (Cyp51) resembles Antley-Bixler syndrome.
Antley-Bixler syndrome (ABS) represents a group of heterogeneous disorders characterized by skeletal, cardiac, and urogenital abnormalities that have frequently been associated with mutations in fibroblast growth factor receptor 2 or cytochrome P450 reductase genes. In some ABS patients, reduced activity of the cholesterogenic cytochrome P450 CYP51A1, an ortholog of the mouse CYP51, and accumul...
متن کاملCholesterol metabolism: the main pathway acting downstream of cytochrome P450 oxidoreductase in skeletal development of the limb.
Cytochrome P450 oxidoreductase (POR) is the obligate electron donor for all microsomal cytochrome P450 enzymes, which catalyze the metabolism of a wide spectrum of xenobiotic and endobiotic compounds. Point mutations in POR have been found recently in patients with Antley-Bixler-like syndrome, which includes limb skeletal defects. In order to study P450 function during limb and skeletal develop...
متن کاملDiminished FAD binding in the Y459H and V492E Antley-Bixler syndrome mutants of human cytochrome P450 reductase.
Numerous mutations/polymorphisms of the POR gene, encoding NADPH:cytochrome P450 oxidoreductase (CYPOR), have been described in patients with Antley-Bixler syndrome (ABS), presenting with craniofacial dysmorphogenesis, and/or disordered steroidogenesis, exhibiting ambiguous genitalia. CYPOR is the obligate electron donor to 51 microsomal cytochromes P450 that catalyze critical steroidogenic and...
متن کاملAmbiguous genitalia, impaired steroidogenesis, and Antley-Bixler syndrome in a patient with P450 oxidoreductase deficiency.
Cytochrome P450 oxidoreductase deficiency is a recently established autosomal recessive disease characterised by ambiguous genitalia, impaired steroidogenesis, and skeletal malformations, referred to as Antley-Bixler syndrome. Clinical manifestations in affected patients are highly variable. We report on a girl with P450 oxidoreductase deficiency who presented with virilisation at birth. There ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013